Tinbergen Institute Econometrics Lectures 2017

Trevor Hastie (Standford University)
10-12 May 2017

Trevor Hastie is the John A. Overdeck Professor of Statistics and Professor of Biomedical Data Science at Stanford University. He has a joint appointment in the Department of Statistics at Stanford University, and the Division of Biostatistics of the Health, Research and Policy Department in the Stanford School of Medicine. Professor Hastie is known for his research in applied statistics, particularly in the fields of data mining, bioinformatics and machine learning. He has published four books and over 180 research articles in these areas.

Topic and course outline

We give an overview of statistical models used by data scientists for prediction and inference. With the rapid developments in internet technology, genomics, financial risk modeling, and other high-tech industries, we rely increasingly more on data analysis and statistical models to exploit the vast amounts of data at our fingertips.

We then focus on several important classes of tools. For wide data, we have a closer look at the lasso and its relatives, and for tall data random forests and boosting. We also review the recent advances in deep learning. Most of the material can be found in “An Introduction to Statistical Learning, with Applications in R”

by Gareth James, Daniela Witten, Trevor Hastie and Robert Tibshirani (Springer, 2013), which is also available free in pdf format here.
Keywords: machine learning, statistical models, neural networks, lasso


Tinbergen Institute Rotterdam, Burg. Oudlaan 50, 3062 PA Rotterdam

Registration for the TI Econometrics Lectures by Trevor Hastie

TI MPhil students should register by means of the online registration mode in Osiris. PhD students should use the online course registration form. Exernal students use the form for external students.

The registration code for the Lectures is: TI167.
Deadline for registration: April 20, 2017.