The theory of Industrial Organization

Ph. D. Program in Law and Economics

Session 10: Network externalities

J.L. Moraga

Network Effects

Network: Set of individuals and set of links between them.

– Physical: Telephone, Fax, ATM networks, Internet, etc.
– Virtual: networks of users of compatible and complementary goods; videorecorders and videotapes, hardware and software, cars and repair parts, etc.

Network Externalities: the value to a user of connecting to a network (or acquiring a product) is increasing in the # of other persons who are (will be) in the network.

– Physical: direct Virtual: indirect
Systems

System: 2 or more goods with little (or no) value in isolation but generating a large value when consumed together.

- *Consumers shop for systems, not for individual products (strong complementarities)*
 - *Examples*: Nuts and bolts, razors and blades, cameras and lenses, hardware and software, music players and cassettes

Multiplicity of equilibria

Network externalities and system products generally lead to multiple equilibria.

↓

In such settings expectations play an important role in selecting among equilibria.

The question that arises is how *private* and *public* institutions can influence expectations.
The role of expectations: example 1

2 products a, b offered competitively at price p

2 consumers.

consumer’s utility:
- $u_a(A)$ if he acquires product a with network size A
- $u_b(B)$ if she acquires product b with network size B

Assume:
- Network externalities: $u_a(A_2) > u_a(A_1)$ when $A_2 > A_1$; and $u_b(B_2) > u_b(B_1)$ when $B_2 > B_1$.
- Network effects more important than product features: $u_a(2) > u_b(1)$ and $u_b(2) > u_a(1)$

Game: All consumers decide simultaneously which product to acquire.

Result

Assume $p > u_a(1)$ and $p > u_b(1)$

<table>
<thead>
<tr>
<th>Strategy</th>
<th>a</th>
<th>b</th>
<th>no adoption</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buyer 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>$u_a(2)-p$, $u_a(2)-p$, $u_a(1)-p$, $u_b(1)-p$, $u_a(1)-p$, 0</td>
<td>$u_a(1)-p$, 0</td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>$u_b(1)-p$, $u_a(1)-p$, $u_b(2)-p$, $u_b(2)-p$, $u_b(1)-p$, 0</td>
<td>$u_b(1)-p$, 0</td>
<td></td>
</tr>
</tbody>
</table>

Buyer 2

<table>
<thead>
<tr>
<th>Strategy</th>
<th>a</th>
<th>b</th>
<th>no adoption</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>$u_a(2)-p$, $u_a(2)-p$, $u_a(1)-p$, $u_b(1)-p$, $u_a(1)-p$, 0</td>
<td>$u_a(1)-p$, 0</td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>$u_b(1)-p$, $u_a(1)-p$, $u_b(2)-p$, $u_b(2)-p$, $u_b(1)-p$, 0</td>
<td>$u_b(1)-p$, 0</td>
<td></td>
</tr>
</tbody>
</table>

Then, there are 3 pure strategy Nash-equilibria:
- no one adopts the product
- everyone chooses product a
- everyone chooses product b
Coordination problem

How can consumers coordinate at a particular equilibrium? Formation of expectations is not a trivial task.

Implications for firm behavior and for social welfare

- how private (firms) and public institutions (government) can influence consumer expectations?

Firms’ perspective

Investment in new technologies: Firms’ incentives to invest are clearly sensitive to the pattern of adoption.

- Who is going to invest ‘lots of money’ in something that perhaps is not adopted?
- How can firms *sponsor* new technologies?
 - Create an installed base (innovate faster)
 - Introductory Pricing
 - Drastic innovation (sufficient quality leapfrogging)
Welfare perspective

From the point of view of the society welfare, two problems can arise:

- Since \(p = c < \{ u_a(2), u_b(2) \} \), there is a potential for under-utilization of the network (no adoption equilibrium).
- If, for instance, \(u_a(2) > u_b(2) \), there is a potential for proliferation of inefficient technologies (\(b \) equilibrium rather than \(a \)).

These two reasons explain why public institutions are interested in participating in these markets.

Installed base and critical mass

Firms’ viewpoint

- Market with large benefits from network externalities (e.g., telecom)
- Assume there is a continuum of consumers of size \(M \).
- Each buyer has a demand for one connection
- A buyer is represented by parameter \(v \).
 - Assume \(v \) uniformly distributed in \([0,1]\)
 - The willingness-to-pay for a connection increases as \(v \) increases.
- Buyer’s utility is \(U = n v - p \) where \(n \) is (expectation) of the # of buyers subscribing to the (telecom.) network.
- Assume network product is offered at price \(p \)
Given p and network size expectation n^e, a consumer v connects to the network if and only if he/she obtains a non-negative utility.

Define v_0, consumer indifferent between buying and not buying

$$v_0 n^e - p = 0. \text{ Then } v_0 = p / n^e.$$

Consumers with $v \geq v_0$ will connect.

For given n^e, the actual # of buyers is then $Q = M n^e (1 - v_0)$.

Assume consumers’ perfect foresight.

$$n^e = Q = M n^e (1 - p / n^e).$$

Demand is $p = Q (1 - Q / M)$.
The demand for telecom. services

Low adoption equilibrium is unstable. Q^L_0 is the critical mass:
- If # users > critical mass, convergence towards high-adoption equi.
- Otherwise convergence towards no adoption equi.

Installed base and critical mass

- How to cross critical mass threshold?
 - Introductory pricing
 - Take care of installed base:
 - build a new network upon an existing one
 - Provide compatibility
Installed base and critical mass
Welfare viewpoint

Farrel-Saloner (AER, 1986) compare private and social incentives for the adoption of a new technology that is incompatible with the installed base.

2 models:
- Network builds with new users
- Network builds through switching of old users

In their models ‘excess inertia’ and ‘excess momentum’ can arise in equilibrium.
- Excess inertia: private reluctance to switch to a new socially more desirable technology due to the existing network effects of the old technology (installed base).
- Excess momentum: The inefficient adoption of a new technology

Example: a model with New Users

The set-up:
- There is an Old network, at time T* a new better technology arrives.
- The new network must be built up by new users
- Users are infinitesimal and arrive continuously over time to the market.
- Each new user decides which technology to adopt given what the others have done.

The determining variables:
- The size of the installed base (network size of the old technology)
- The relative superiority of the new technology (superior technical features / higher network benefits)
- How fast network benefits of the new technology are realised
Nash equilibrium

- A Nash equilibrium is a collection of users’ strategies such that no user wants to change its strategy given the choices of the other users.
- A user adopts the new technology if the present value of the flow of benefits obtained is greater than when adopting the old technology.
- A user is more inclined to adopt New when
 - is technically better
 - is subject to larger network externalities
 - arrives fast in the market (old has small installed base)
 - Future benefits are important (low interest rate)

Welfare point of view

- There are positive and negative welfare effects from the adoption (or not) of a new technology N.
- Positive: Late users gain because N is adopted.
- Negative:
 - Early adopters of N may have preferred not to adopt and lose
 - The O network stops growing; there are people stuck with the old technology, they suffer a loss.
Alignment of private and social incentives

Factors leading to excess inertia (or less excess momentum)
- Large installed base (slow innovation)
- Moderate innovativeness
- High interest rates

Product pre-announcements increase the extent to which the new technology is adopted. It can mitigate excess inertia but accentuate excess momentum.

Compatibility and standardization

- A solution to excess inertia and excess momentum is provision of compatibility.

- Compatibility can be achieved via
 - *Industry Standards*: all firms that choose compatibility must agree to make their networks compatible.
 - *Adapters*: in this case any firm can unilaterally choose to be compatible with another firm
Incentives for Compatibility may be too low

- But do firms have the proper incentives to produce compatible products?
 - Private incentives to achieve compatibility may be too low

- Private incentives:
 - \(\alpha - \lambda = \lambda ' - \lambda ' \) in the case of an adapter,
 - Or by \(\alpha - \lambda = \lambda ' \alpha - \lambda \) in the industry-standard case (allowing for syde payments)

- Social incentives:
 - \(\alpha W = \alpha - + \alpha CS \)

Since compatibility increases aggregate output, private incentives are not be excessive.

Too low incentives

Large firms will tend to be against compatibility, while *small* firms will tend to favor product compatibility.

In dynamic contexts:
- backward compatibility often provided
- but not so much forward compatibility
Caveats with compatibility

- Product variety is reduced.
- Competition