• Graduate program
    • Why Tinbergen Institute?
    • Program Structure
    • Courses
    • Course Registration
    • Facilities
    • Admissions
    • Recent PhD Placements
  • Research
  • News
  • Events
    • Summer School
      • Behavioral Macro and Complexity
      • Econometrics and Data Science Methods for Business and Economics and Finance
      • Inequalities in Health and Healthcare
      • Introduction in Genome-Wide Data Analysis
      • Research on Productivity, Trade, and Growth
      • Summer School Business Data Science Program
    • Events Calendar
    • Tinbergen Institute Lectures
    • Annual Tinbergen Institute Conference
    • Events Archive
  • Summer School
  • Alumni
  • Times
Home | Events Archive | Count and Duration Time Series with Equal Conditional Stochastic and Mean Orders

Count and Duration Time Series with Equal Conditional Stochastic and Mean Orders

  • Location
    Vrije Universiteit Amsterdam (De Boelelaan 1105), Room HG-08A-20
  • Date and time

    October 18, 2019
    16:00 - 17:15

We consider a positive-valued time series whose conditional distribution has a time-varying mean, which may depend on exogenous variables. The main applications concern count or duration data. Under a contraction condition on the mean function, it is shown that stationarity and ergodicity hold when the mean and stochastic orders of the conditional distribution are the same. The latter condition holds for the exponential family parametrized by the mean, but also for many other distributions. We also provide conditions for the existence of marginal moments and for the geometric decay of the beta-mixing coefficients. We give conditions for consistency and asymptotic normality of several estimators of the conditional mean parameters which do not require fully specifying the conditional distribution. We compare Quasi-Maximum Likelihood Estimators (QMLEs) (in particuler the Poisson QMLE and the Exponential QMLE) and weighted least squares estimators. Simulation experiments and illustrations on series of stock market volumes and of greenhouse gas concentrations show that the multiplicative-error form of usual duration models deserves to be relaxed, as allowed in our approach.

Joint with Abdelhakim Aknouche.