• Graduate program
    • Why Tinbergen Institute?
    • Program Structure
    • Courses
    • Course Registration
    • Facilities
    • Admissions
    • Recent PhD Placements
  • Research
  • News
  • Events
    • Summer School
      • Behavioral Macro and Complexity
      • Econometrics and Data Science Methods for Business and Economics and Finance
      • Experimenting with Communication – A Hands-on Summer School
      • Inequalities in Health and Healthcare
      • Introduction in Genome-Wide Data Analysis
      • Research on Productivity, Trade, and Growth
      • Summer School Business Data Science Program
    • Events Calendar
    • Tinbergen Institute Lectures
    • Annual Tinbergen Institute Conference
    • Events Archive
  • Summer School
  • Alumni
  • Times

Bartelsman, E. and Wolf, Z. (2014). Forecasting Aggregate Productivity using Information from Firm-level Data Review of Economics and Statistics, 96(4):745--755.

  • Journal
    Review of Economics and Statistics

In this paper, we explore whether information from firm-level data can improve forecasts of aggregate productivity growth. We generate firm-level productivity measures and aggregate them into time-series components that capture within-firm productivity and the productivity contribution of reallocation. We showthat these components improve aggregate total factor productivity forecasts in a simple univariate setting, even when firm-level data are available with a time lag. Lagged firm-level information also improves aggregate productivity forecasts when we combine results from a variety of different multivariate forecasting models using Bayesian model averaging techniques.