• Graduate program
  • Research
  • News
  • Events
    • Summer School
      • Climate Change
      • Gender in Society
      • Inequalities in Health and Healthcare
      • Business Data Science Summer School Program
      • Receive updates
    • Events Calendar
    • Events Archive
    • Tinbergen Institute Lectures
    • Conference: Consumer Search and Markets
    • Annual Tinbergen Institute Conference
  • Summer School
    • Climate Change
    • Gender in Society
    • Inequalities in Health and Healthcare
    • Business Data Science Summer School Program
    • Receive updates
  • Alumni
  • Magazine

Creal, D., Koopman, S. and Lucas, A. (2011). A dynamic multivariate heavy-tailed model for time-varying volatilities and correlations Journal of Business and Economic Statistics, 29(4):552--563.


  • Journal
    Journal of Business and Economic Statistics

We propose a new class of observation-driven time-varying parameter models for dynamic volatilities and correlations to handle time series from heavy-tailed distributions. The model adopts generalized autoregressive score dynamics to obtain a time-varying covariance matrix of the multivariate Student t distribution. The key novelty of our proposed model concerns the weighting of lagged squared innovations for the estimation of future correlations and volatilities. When we account for heavy tails of distributions, we obtain estimates that are more robust to large innovations. We provide an empirical illustration for a panel of daily equity returns. {\textcopyright} 2011 American Statistical Association.