• Graduate program
    • Why Tinbergen Institute?
    • Program Structure
    • Courses
    • Course Registration
    • Facilities
    • Admissions
    • Recent PhD Placements
  • Research
  • News
  • Events
    • Summer School
      • Behavioral Macro and Complexity
      • Econometrics and Data Science Methods for Business and Economics and Finance
      • Experimenting with Communication – A Hands-on Summer School
      • Inequalities in Health and Healthcare
      • Introduction in Genome-Wide Data Analysis
      • Research on Productivity, Trade, and Growth
      • Summer School Business Data Science Program
    • Events Calendar
    • Tinbergen Institute Lectures
    • Annual Tinbergen Institute Conference
    • Events Archive
  • Summer School
  • Alumni
  • Times

Blasques, F., Gorgi, P. and Koopman, S.J. (2019). Accelerating score-driven time series models Journal of Econometrics, 212(2):359--376.

  • Journal
    Journal of Econometrics

We propose a new class of score-driven time series models that allows for a more flexible weighting of score innovations for the filtering of time varying parameters. The parameter for the score innovation is made time-varying by means of an updating equation that accounts for the autocorrelations of past innovations. We provide the theoretical foundations for this acceleration method by showing optimality in terms of reducing Kullback–Leibler divergence. The empirical relevance of this accelerated score-driven updating method is illustrated in two empirical studies. First, we include acceleration in the generalized autoregressive conditional heteroskedasticity model. We adopt the new model to extract volatility from exchange rates and to analyze daily density forecasts of volatilities from all individual stock return series in the Standard & Poor's 500 index. Second, we consider a score-driven acceleration for the time-varying mean and use this new model in a forecasting study for US inflation.