• Graduate program
    • Why Tinbergen Institute?
    • Program Structure
    • Courses
    • Course Registration
    • Facilities
    • Admissions
    • Recent PhD Placements
  • Research
  • News
  • Events
    • Summer School
      • Behavioral Macro and Complexity
      • Econometrics and Data Science Methods for Business and Economics and Finance
      • Experimenting with Communication – A Hands-on Summer School
      • Inequalities in Health and Healthcare
      • Introduction in Genome-Wide Data Analysis
      • Research on Productivity, Trade, and Growth
      • Summer School Business Data Science Program
    • Events Calendar
    • Tinbergen Institute Lectures
    • Annual Tinbergen Institute Conference
    • Events Archive
  • Summer School
  • Alumni
  • Times

Hecq, A., Issler, J.V. and Telg, S. (2020). Mixed causal–noncausal autoregressions with exogenous regressors Journal of Applied Econometrics, 35(3):328--343.


  • Affiliated author
  • Publication year
    2020
  • Journal
    Journal of Applied Econometrics

Mixed causal–noncausal autoregressive (MAR) models have been proposed to model time series exhibiting nonlinear dynamics. Possible exogenous regressors are typically substituted into the error term to maintain the MAR structure of the dependent variable. We introduce a representation including these covariates called MARX to study their direct impact. The asymptotic distribution of the MARX parameters is derived for a class of non-Gaussian densities. For a Student (Formula presented.) likelihood, closed-form standard errors are provided. By simulations, we evaluate the MARX model selection procedure using information criteria. We examine the influence of the exchange rate and industrial production index on commodity prices.